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NOTES

ON THE

THEORY OF ERRORS OF OBSERVATION.

Let a stone be dropped with the intention that it shall strike a mark on the
ground. Through the mark draw two lines at right angles and take these as axes
of co-ordinates z and y.

Let ¢ (z) dz be the chance of the stone falling between the distances 2 and
2 + dz from the axis of y.

then ¢ (y) dy will be the chance of the stone falling between the distances
y and y +dy from the axis of 2.

Begarding these as independent events, the chance that the stone will fall on
the small rectangle da dy is

¢ (2) ¢ (y) dz dy.
For if p is the probubility of an event which may bappen in & ways and fail in ¥ woys

and ,, ¢ » another independent event o’ » [

’

ond ¢ = _2

then p= el

a+b
also the two ovents may happon in @ o’ ways out of o total of (a + 8) (a’ + ') ways,

aa

therefore the probability of both happening = Gro@+o) - 29

The chance of the stone falling on the small rectangle is therefore

¢ (#) ¢ (y) do

where do is an element of area about the point zy.

~ Now this must be independent of the direction in which the axes are drawn so
that if we take a new set of axes, one through the mark and the point zy and the
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other through the mark at right angles to this, the new co-ordinates of the point

zy will be 4/2* + y* and 0,
and the chance of the stone falling on the small element of area do will be

¢ {V/2+ ¢} $(0) do.
Tl?erefore $(@) ¢ =9¢{/7+ 3} ¢(0).

Differentiate with regard to 2 and then with regard to y, and we get

26 (VET Lo @

() ¢ (y) =

Ty
VTR 8 0
NEPIP RS LEET 3
Vi 4y
Dividing we get
¢ @) _ ¥
zo(z) gy
8o that :,1’(2) is constant,
¢ (=) .
Put FrYC haia
therefore ¢ _ 2mz,
¢ ()
there d,) 2
ereforo oz 18 p(z)=2ma,
therefore log ¢ (z) = mz? + conetant;
whence ¢ (2) = C e

Now the chance of the stone hitting a point ry must diminish as the point
recedes from the mark, therefore ¢ (z) must diminish as z increases; so we may put

m=— L
= a3’

1],

therefore $(z)=C e

Thus the chance of the stone hitting the ground between the lines # and z + dz is
1.2

$(z)dz=Ce © da.

The integral of this between the limits for z of — infinity and + infinity gives
the chance of the stone hitting the ground somewhere and as this is certainty we

may put
‘o o
. Cf e 4 dz = 1.

:I

+o o
Put u=f e © de,
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Ag it is quite immaterial whether we use the letter # or the letter y in this integral,

2
o _ ¥
wo have u= e c? dy,
—-@®
- 22

Yo - = +@ ¥
therefore w = J e ¢t dz xf e c? dy
- -0
+0 vo _ZT_8
= f f e ¢ ¢ drdy.
- -

Now changing to polar co-ordinates, the elementary area dx dy becomes 7 €6 dr and z? + 42 = 72

Also since the integral extends to infinity in every direction, the limits for 7, are 0 and @ and
for 0, 0 and 27,

Pe

L 2 —_ 2_
Therefore w? = f f e ¢ rdodr
[1] 0

£ il ® 72 2
=7rf e & d() =c21rf e‘?d(i,-)
0 0 [4
=cn
then u= ¢\/m,
therefore Ccy/m =1

Therefore the chance of the stone hitting the ground between the lines x and # + dz is

which thercfore represents the probability of an error lying between # and » + dz.

Suppose that the total number of measures of a quantity is 4, where 4 is a
very large number, then we may expect the number of errors which fall between z
.’I"'

and 2z + 8 to be

A4 -z )
- e 8z ) where ¢ is a modulus, constant for any one system
4 ™

of measures but different for different systems. This applies equally to positive (+)
and negative (—) crrors, the number 4 including all the measures whether the
errors are + or —, and the number of + aud — crrors being practically identical
when 4 is large.

I.— Mean Error.

Suppose now that the true valne of the quantity is known so that each of all
the crrors can be found.  Then take the mean of all the positive errors and also that
of all the negative errors and the mean of these two without regard to sign.
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This is called the Mean Error and is to be regarded as a number without a sign.

Since the pumber of errors whose magnitude is } _ A e - Fsr
included between 2 and z + &z cvn s

and the magnitude of each error does not differ much from z, so that the sum of these
errors will be

U

A e
cvr ’
4 e -t o
Therefore sum of all errors of + sign = —Tf Sze Cr= c_r,
cy/m 0 2/
and the number of all the errors of + sign = ———f e oz = =,
e/ o 2

c

therefore mean positive error = ——.
Vv
Similarly mean negative error = <
AT
= ¢ x 0-564189.

¢
Therefore Mean error = :/—_
m

I1.—Error of Mean Square.

Square each of the errors, take the mean of these squares and 'then extract its
square root. This is called the Error of Mean Square, and is also a numerical quantity
withoui sign.

z3
Now, as before, the number of errors lying ) _ A4 c_ Aap
between z and # + 8z e/
1

so that the snm of the squares of errors -

A
between z and x + 8z } e /m ¢
.1.'2

+mo -y
Theref.re the sum of the squares of all errors = —:;—f Sze ¢ 2°
e/md

% dx.

2 22

- t® + LT

[_ AC, ze "] + ~4—C—_ “sxe ©
/7 e 24/ e

_ Ac? Ac®
= 0 =+ ) = —2—;.




THEORY OF ERRORS. 7

But total number of errors = 4,
Ac® ¢
therefore mean square = mean of squares = - 4=

Therefore Error of Mean Square = ,\/ﬁ;_ = ¢ x 0°707107.

TI1.—Probable Error.

By this is 7o meant that the number used is more probable than any other,
but that if the + sign De used the number of errors greater than the probable error, is
the same as the number of errors less than the probable error, and when the — sign is
used the same remark applies to the negative errors. The probable error itselfis a
nuwerical quantity without sign.

22

o A 2] -
Now the number of positive errors up to the value of 2z = —_f Sze <,
cy/md 0
A

and the whole number of positiveerrors . . . = 3

B}

therefore half the number of positive errors . . . =

L3N

a3

Therefore to find the probable error we must put ‘i‘/1 swe @ = 4,
e/ 0 4

and writiug cw for £ we must put

1 ® — w0
- dwe =1
x/'rr 0

A table has been constructed for this integral, and from it the value of w which
satisfies this equation

is found to be w = 0-476948,

|

that is x

¢ x 0°476948,

therefore Probable Ervor = ¢ x 0476948,

IV.—Probable Error §c. of aX.

Suppose that in different measures of a quantity X, the errors @y, z,, 7, efc.
have heen made, then if in our investigation a quantity «X comes in by purely algeb-
raical transformation and nof by mcasuring X, @ times, the values of ¥ = aX derived
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from these different measures are affected by errors ax,, ax,, az;, efc., the number
remaining the same. So that if X is liable to any number of errors of magnitude a,
Z + 8 or anything between them, then Y is liable to the same number of errors of
magnitudes az = y or ez + adx = y + 8y or anything between them,

The number of errors of ¥ or ¢X whose magnitudes fall between y and y + 3y
is the same as the number of errors of X between 2 and # + 8« and is

2

A _I_
e © oz,

e/

A e iy
ac\/;r

This is exactly the same form as before, so that we have

sndas z=7, this expression =
e

1. The law of frequency of error for ¢X is similar to that for X.

2. The modulus is ac.
Therefore Mean Error of aX = ac x 564189 = ¢ x Mean Errorof X
Error of Mean Square of X = ac x *707107 = a x e.m.s.of X

Probable Error of aX = ac x 476948 = a x p.e. of X

V.—Probable Error &c. of the sum of a number of quantities such as aX.

Again when two fallible determinations X and Y are added together algebraically
to form a result Z, the law of frequency for each will be the same as for (X + Y), but
the modulus will be got from

Square of modulus of Z = square of modulus of X + square of modulus of ¥.

e
. S 1 ¢
For the probability of an error z in X is —=e dz
e/n
s
1 o
and » » yin Yis e Voay
v
PLI
P
therefore the probability of tho simulteneous occurrenco of theso two is R dy.

Now an error z in X and on error  in ¥ produce an orror z in Z according to the relation
2=z +y,

and this relation can always be satisfied by combining any value of y with all the values of z ranging from
-® o + @,
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The probability therefore of an error z in Z muy be written

_1“"_3]2
1 +o P A
dyf e © O dz,
ce w —o

But since y is independent of & dz = dy.

Therefore the probability of an error ¢ in Z

2 1 (z — x)?

to — Ty~ o
-1 d:‘/. e ° o dz
cey o
22 1 1 o’z 2
1 “ T rel ‘o = ‘z’f_z)("z—:)
_ e Stag: e ¢ ¢y e +e’) gp

—®

1 & H ! —
= e cCra gz x 5] 5 \/1r
cew ¢+ ¢

22
1 -
= ————— & C + o dg,
2
VT e v
22
1 |
= - e €2 dz,
Ve
where e =¢c*+ 02

So that the lnw of crror of Z is the same as that of X and ¥ and the square of the modulus of Z =
square of modulus of X + square of modulus of ¥.

From this it follows that
(m.e. of Z)* = (m.e. of X)® + (m.e. of Y)?
{e.m.s. of Z)* = (e.m.s. of X)? + (e.m.s.of Y)?
(pe.of Z)* = (pe. of X)® + (pe. of ¥)?

Also since Y is liable to + and — errors of the same magnitude in equal
numbers, it follows — ¥ is liable to the samc errors as + Y,

Therefore peof —Y = peof +Y
Therefore if W=X-Y=X+(-Y),
(pe of W)= (pe of X)® + (p.e.of — Y)> = (p.e of X)® + (p.e. of ¥)?
Therefore  {m.e. of (X + Y)}* = (m.e. of X)* + (m.e. of ¥)*
{ems. of (X + Y)}* = (ems. of X)° + (ems. of V)2

{pe.of (X +Y)}*= (pe of X)* + (pe of ¥)
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Also {p.e.of (kX + 1Y)} = (pe of kX)* + (pe of 1 Y)*

= (k x pe.of X)2 + (I x pe.of Y)?

=k x (pe.of X)® + I x (pe. of YV)2

Similarly for m.e. and e.m.s.
Also {pe.of (R+ S+ T)}* = {pe.of (R+ 8)}*+ (pe.of T)

= (p.e.of R)? + (p.e. of 8)? + (p.e.of T)"
Similarly

{p.c.of (rR + sS + tT + etc.)}* = *. (p.e. of R)® + §* (p.e. of )’ +£2(p.e. of T)% +ete.

Similarly for m.e. and e.m.s.

VI1.—The Probable Error &c. of the sum of a number of different independent
measures of the same physical quaniity and of their mean.

Let X, X, . . . X, be all different independent measures of the same physical

quantity or of equal physical quantities in every one of which the probable error is the
same and equal to the p.e. of X|.

{peof (X, +X,+ ...+ X,)}?= (peof X))® + (pe.of X}’ + ... + (pe of X,)?
=n x (p.e of X))%
therefore pe.of (X, +X,... + X,) = /n peof X,
Similarly for e.m.s.
Again

Mean:‘)—('+¥l~’—+...+‘x—,”,
n n n

2 "\ 2 o\
therefore ( p.e. of mcan)® = (p.e. of %‘) + (p.e. of ‘};) + ...+ (p.e. of /\n‘)

1 ) , \s
s {(p.e.of X2+ (peof X)) + ... + (peof /\,,)3}

1 . 2
71_( pe. of X, ),

= %/n pe of X,

therefore p.e. of mean

Similarly for e.m.s.
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VIL.—The Probable Error of a function ¢ (X, Y, Z, §c.) of one or several
Sfallible quantities in terms of the Probable Error of each.

It is supposed that the values 2, y, 2, &c. of the fallible quantities X, ¥, Z, &ec.
arc very approximately known, and therefore we may consider X equal to » + 8z where
2 is an absolute constant and 82 a very small quantity liable to error, and where conse-
quently the error of X is equal to the error of dx, and therefore the probable error
of X is equal to the probable error of 8z, and so for the others,

Now

¢ (X, V,Z, &)= 9 (z,9,2 &)+ (-Z,— ¢ (2,9, =, &e.) Sz + %qb(xﬂ , 2, &c.) 8y + &e.

where everything is constant except 8z, &y &e.

9

Hence {p.e. of ¢ (X, Y, Z, &c.)} = {% d(z, 9, 2 &c.)}-x (p-e. of 8z)*

’ )
+ {@ ¢ (2, 9, 2, &) } +(p.e. of 8y)?

+ &e.
Restoring the equivalents and remarking that the coeflicients z, y, z, &e. are
sensibly equal to X, Y, Z, &c.,

{p.e. of ¢ (X,7, Z, &c.)}g = {id»\,cf)(X, Y, Z, &c.) }2 x (p.e. of X)?

a

d . .
+{ S e® V2800 } x (peof vy

+ &c.
Thus if xisthe probable error of X,
then . peoflog X = ‘—Z—\, log X x 2= %
Again let W, =mX
and et u be the pe. of m and  x that of X,
then log IV, =log m + log X
therefore {pe.of log W12 = { p.e of logm}® + {p.e. of log X }?

.e.of W)? 2 22
that (pe.of Wy)* _ w?  a°
S0 tha + X‘J'

w3 ol
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Now let w, d

T X
therefore log W, = log m — log X,
. (peof W))2_ p | 2°
and similarly g T t 5
_(pe. of W)?
=" .
Therefore peof W, =pe of W, x X2

VIIL.—Probable Error &c. in a given series of observations.

Suppose now that the true value of the quantity is not known. The mean of the
observed values is taken to be the true value and it is afterwards proved in Section IX
that this is the best value that can be adopted.

Suppose M to be the true value and @, b, ¢, ete. the errors. The observations
then are M + o, M + b, M + ¢, etc.,

a+ b+ ¢+ &
n

and the mean of the observations = M +

Therefore the apparent errors are

a+ b+ c + &
n

a+ b+ c + &e
n

etc. ete.
Therefore the sum of squares of apparent errors

=a9—%"(a+b+c&c.)+lg(a+”+c+&°')g

W
. 26 1 o
+b'——7?(a+b+(:&c.)+;L—,',(a+b+c+&:c.)~

+ ¢ — ete. ete.

=a’+b9+c9+&c.——2‘(a+b+c+&c.)2+ " (@+b+c+ &c.)?
n n?

=a”+bz+cg+&c.——}; (@a+b+c+ &)
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But (@+8&+c+ &)= e+ ¥+ &+ &e
since there are as many + «’s as there are — @’s and + #’s as — &’s &c., so that the
sum of all the products vanishes.

Therefore the sum of squares of apparent errors

n—1
n

(a® + B + &c.).

Now mean square of error of a=a°, of b=10" etc. ete.
therefore the sum of squares of apparent errors

n—1
= (mean square of error of a + mean square of error of & + ete.)
n .

= t—l{(error of mean square of @) + (error of mean square of b)® + ... ete.}.
n

Then, taking error of mean square of @ = error of mean square of & = ete.
we get

Sum of squares of apparent errors
= (r — 1) {error of mean square of a measure}®,

Therefore error of mean square of a single measure

- \/sum of squares of apparent errors
n—1

and error of mean square of the mean of the measures

— \/sum of squares of apparent errors
n(n—1)

and probable error of a single measure

= 06745 4 /SN OF squares of appazcut errors

w— 1

and probable error of the mean of the mceasures

sum of squares of appare ror
= 0G745 \/ \ quares of apparent ervors.
n (i —1)
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IX.—Comébination of measures all equally good.

Supposing that we had three measures of a quantity and that two of them were
A and the third B. Tt is clear that a grcater preponderance should be given to 4 than
to B. In fact in taking the mean we should have :—

A+4+B _24+3B
3 =73

Following out this idea when we have different values of the quantity to be
measured, and we are not sure that they are all of equal value, the method of combin-
ing them is to multiply each of them by a certain number called the Combination Weight,
to add these results together and divide by the sum of the combination weights.

What combination weights arc we to use?

They are to be determined so that the probable error of the result is to be as
small as possible.

Suppose that we have » independent measures of a quantity all equally good so
far as we can judge d priori, to find the proper method of combining them.

Let their probable errors be e, e,, ¢, ... e, (cach = e).
Let their actual errors he E,, E,, E,, ... E, (these of course being unkuown),
Let their combination weights be w,, w,, wy, ... wa.

Then the actual error of the result

_wE +wE + ... +wkE,
- w +w,+ ...t w,
0, Wy w,
= E ? E,+.. .+ ——E
w, +owy + ... l+wl-}-wg+... : t +wl+w2+.. "
therefore (probable error of result)?
2
= ( Y ) 0 ) e + ete.
w, + wy + . . w, + wy+ . ..
_wlfeldwle L L + w2e?
- (wy +w,+ ... ... + w,)?
s Wt wrE 4. + w,? . ,
= e, 2 > since the e’s are equal.
(o, +wy + .. 0. L. + w,)

If we make this a minimum with regard to w, we have

2y (wy +wy+ A w) =20, Fw,+ . Hw) Wit w .+ 0,)=0
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w, — 1 .

hat 3 =
SOta'w12+w2'+...+w,,2 w W+ ...+ W,

Making the same expression a minimum with regard to w, we get

w, _ 1
witwli+. .. twd wtwt...+w,

&e. &e.

. e_g : e

Therefore w, = w, = elc. = w,, and the p.e. of the result = C=—.
n 4/n

E,+E. .. +85, so that the arithmetical mean

The actual error of the result is -
the observations is the best value that can be adopted.

X.—Combination of measures not all equally good.

As before

202 2 02 203
(pee. of result)“:wl e + w,’ ey +...+w; e
(w,+wy+ ..o+ w,)

1f we make this a minimum with regard to w, we get

2w 03 — Q(wlef +wlel+ ... +wlet) _ 0
rh W+ wy+ ...+ w,
2
. w, e 1
that is =% 5o g I, =
Wy et + wy e + .. LW, en” w, + w,+ ...+ w,

Similarly making the expression a minimum with regard to w, we get

1

w, 65 _
wrel+wlel+ . +twlel wtw,+ ...+ w,
&e. &ec.
so that we = wyel = ete. = w,e’ = ¢ (say)
or w ‘s w C ete. w ¢
W\ = T3 y = —3? . =—;
e e, " el
a clw+w,+...4+w
therefore {p.e. of result)? = - (o, 2 "2)
(0, +wy 4+ . ..+ w,)

¢
wy + Wy + . . .+ W,

of
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1 oy 1, »,
01' (p.e. of result)* ~ ¢ Rarali IR -
S SN S
= 012 022 .+ »eug
1 ‘ '
Let pe )’ be called the Theoretical Weight.
1 1w

Then the theoretical weight of E, = e EF = o =
€. 9) € c

__ Therefore the ‘ theoretical weight” is proportional to the combination
weight”, and the theoretical weight of the final result is equal to the sum of the
theoretical weights of the separate measures.

X1.—Deduction of the value of an angle and of its weight from ils
several measures.

Suppose that an angle is observed on a number of zeros and several times on
each. The result is subject to errors of “observation” and errors of “* graduation ”.

Let o be the error of mean square of observation for a single observdation
» g » » graduation " "
then (total error of mean square)? = o® + ¢2,

and if there were n values at a graduation
2
(total error of mean square of the mean of this graduation)? = 07 +4°

The difficulty is to find 0 and g. The latter should be found from a great number of
observations with the same instrument and this result always used, but this is often
inconvenicnt. The method adopted in the Survey Department is to take each zero mean
out, subtract this from the separate observations of that mean, take the sum of the
squares of all such results for all the zcros to give the eom.s. of observation. Then
take the mean of the zero means and subtract this from each zero mean and take tle
sum of the squares of the results to give the e.m.s. of graduation.

The last cquation will give the e.m.s. of the mcan of each zero. From this we
get the weight of cach zero, aud the sum of the zero weights, which will be the
weight of the final mean result.

Now suppose that there are m zeros, and that the values at each zero are

a a, a ... .. ... ay
By by by o oo b
&c. &c

and let the total number be N.
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a+a+a+ ...+ ay

Then we take the mean 4 = p
B= by + by 4 by 4+ ..+ by
» 22 2 - nl/
&e. &ec.

and let the mean of A4, B, etc. be P.
Subtract 4 from each of the a’s, gettinge; — 4, ¢, — 4. . .ay — 4
» B » » b’s » b], - B; bz —-B... bn” - B
&e. &e.

then (error of mean square of observation for a single observation)®

ey = A+ (g — AP, .+ (b =B+ (b — B+ ...+ &e

= N—1 =1L
and (error of mean square of graduation for a single measure)?
A=-P¥+ (B=P*+ ...+ & i .

m— 1

Therefore (total error of mean square of a single zero of » observations)®

The reciprocal of this is the weight of each zero, and the sum of the weights
is the weight of the final result as is shown in Section X.

Now if w,is weight of 4, wp of B, ete. ete., then the proper value to take
tor the final result is

0, A4+ wg B+ we C+ ......
Wy + wp 4 We + venn.s

But we have taken P, therclore the corrcetion to P is

'wAVA + wp B + we _C + ...

Wy -+ Wy + We + ..

- P.

In practice for simplicity of work this is transformed as follows :—
Let wg he the least of the w’s,

wa (A—=P)+wp (B—P) + ... + wg (K—P) + ...
wy + wy + ... + wg + ...

then correction =
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(s —wg) (d—P) + (wp —wg) (B—P)+... + (wg—wg) (K—~P) + ...
wyg + wg + ... + wg 4+ ...

Wg (A—P) + wg (B—P)+ aes
wqg + wyg + ... + wg + ...

_{ws—wg) (A—P)+ (wp —wg)(B—=P)+ ... + (wg —wg) (K—P) +...
- wq + wp + ... + wg + ...
XII.—Method of Least Squares.
If we have a series of errors z, y, z, ete. arising from different causes, and we

want to find their most probable values we proceed as follows :—

We know that the probability of z occurring is Ke © Sz,

2 » » y 3

p2J » »

&e. &c.

Therefore the probability of these occurring together is

=KK K...e & @ & §p8y8z..

We get the most probable values of z, y, 2z, ete. when this is 2 maximum
or when

2 oy 2 . ..
— + =5 + —5 + ete. 1s a minimum.
€ 6 ¢

But ¢,> = (probable error of z)? x (2:096665)2,

1
or ol = . X some constant F.
1

Similarly

¢ =— x F.
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Therefore the most probable values of z, y, 2, ete. are got by making

w, % + w, y* + ete. a2 minimum,

This is called the Method of LEAST SQUARES.

XIIL.—Method of Least Squares applied to the solution of equations.
Suppose we have a series of equations :—
Bt et ..ty =e
o+ oz + bz, =g

where ¢ is greater than =,

M+ e+ R =e,

so that we have more unknowns than equations and we want to find the most probable
values of z, #;, ... #;. This is done as shown above by making

2 2
2 =z z ..
U=-L+>% 4+ ...°- a minimum,
u U u

where u,, u,, etc. are the reciprocals of the weights of #, 2, ete.
Differentiate all these equations, and we get :—
a, dr) + a,dry + ... + 2, dz, = 0
bydey + by dzy + ... + b dr, =0
n1d|z'1 +ngd-2'2+ ‘e +n1d‘l'1=0

2, da, 4 z, dz, ot x, do, =0

uy Uy Uy

Multiply the first of these equations by A,, the second by A4, and so on, and the
last by — 1 and add them all together.

Then
{7\,.(11 + N+ .Mnl—'z-'}dzl + {7&,a,+7\bbg+...+7«.,n,—z-i}d.r,+
1 2

.. +{7\.(1,+Mb¢+...+Xu"¢—§£}d¢‘t =0
‘
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Now as dz,, dz,, etc. are all independent, the coefficient of each of them must
be equal to zero.

Therefore n=u{ha+MNb +.... + N0}

y=t{ Mty + Mby+ . F Ay}

1‘,=u,{7\aa¢+7\bb;+. « .. +),"7ll}

Substitute these values in the original z equations and we get :—

gt {Ma + Nb+ oL+ My} + azztg{x,‘a,+7\b by + . o+ My}

+....+alut{7\,a,+7\bb¢+...+7\nn¢} = €,

&c. &e.
Therefore MNi{gqu +aau + ...+ g}

+ M {a by Febu+ .+ abuw} + ..

ceet M {emu T anu + .+ anud =e

&e. &e.
That is,

[aau] Aa + [@du] M+ ... + [@anu] N

i
By

[edbu] ng + [Bbu] M + ... + [Dnu] My =6

[anu] s + [Bnu]l X + . .. + [RAU] A = e,
where [ ] represents the summations shown above.

It will be seen from these equations that coefficients in the first horizontal line
are the same as thosc in the first vertieal line; the cocflicicnts in the scecond horizontal
line the same as those in the sccond vertical line and so on, so that in writing down
the equations it is usual to omit the quantities below the diagonal.

We have now 7 equations to solve for the » unknowns A, Ay . . Ay, Having
got the \’s, then r,, z,, &c. @, are at once obtained from equations (1).
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XIV.—Corrections to the observed angles of a polygon.

Suppose for example that all the angles in a pentagon are observed and that
the errors are oy, &g« « -+ » - )5, so that the true
values of the angles are X, —,, X,—2, . - X5 —2y;.

- X x
The equations of condition are:— 7/

1. The sumof the observed angles of each
triangle must be equal to two right angles after
being corrected for spherical excess, but as this
never occurs there is an error, e.

Now
Xi—z+X,—z, + X)), — 2
= 180° + spherical excess
therefore
#, + @, + @), = sum of observed angles — (180° + spherical excess) = ¢
so that A ]

Ty + T+ 2y = 6

ete. ete.,
These are the TRIANGULAR EQUATIONS.

2. The sum of the observed angles at the central point must be 360° and as
there is also an error here, we have

Iyt T+ Ty o+ Tyt T = 6
This is the CENTRAL EQUATION.
3. If we start at any side and work round through the triangles till we
reach that side again we ought to get the value we started with, but as this never occurs
there is an error. .

This is the SIDE EQUATION.

To form it we have as just stated

Sin (X, — x,) sin (X, — ;) sin (X, — 2, )
Sin (X, — a,) sin (X, — z,) ©e sin { X — @)

__ siny(?) sin (3) | sin (1)
—sm(l) sin (2) .7 T T T "7 sin (B)

=1

or taking logs.

logyy sin (X, — @) — logy, sin (X, — z,) + ete. =
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But sin (X, — #,) = sin X, cos #, — cos X, sin 7,
= sin X, (cos #, — cot X, sin ;)

= sin X, (1 — z, cot X, sin 1"} since z, is small

that 1s, sin (X, — 7)) =sin X; (1 — ¢, , sin 1”) where ¢, = cot X;.
“,,/,2
But log,(l—a:):—.z'——z—-—etc.
=—2 when 2 is small
and ’ log, (1 =) =log, (1 —2) log, e

= =Mz
where M is the modulus of the common system of logs. viz. -43429448.
Therefore logy, sin (X; — ;) = logy, sin X7 + log,, (1 — @, #; sin 17)
= log,, sin X, — Me, @, sin 1”,

Similarly for the others.

Therefore logy, sin X, — Ma, @, sin 1”7 — log,, sin X, + Ma, z, sin 1”
+ log;, sin X; — Ma, o, sin 17 — ete. =0.
Therefore M {a, 2, — a, 2, + a; r; — ete.} sin 1”

= logy, sin X; — log,, sin X, + log,, sin X, — ete.

=1o sinX;sinX,.......
810 \ 5in Xysin X, . . ... ..
or oz 0 70 + a7 ete. log sin X, sin X, etc. Jcosec*1”
. 11 1% 33 = Slo sin X, sin X, etc. M

The cotangents g,, a, etc. were formerly used, but now another transformation
1s used as follows :—

logy sin X, = M log, sin X,

therefore log10 sin X, = M o+ dX log, sin X,
COH
sin }\’ = M cot X, = Ma,

Now if dX| = circular measure of 1”7 = sin 1”
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then s, = change of logy, sin X; for 1” = Ma, sin 1”
so that the equation becomes

sin X, sin X, &c.

S T =Sy Ly + Sy — ... ete.=1o - -
10 = R8T S5 810 §in X, sin X, &o.

= e

Thus all the equations between the errors are of the first degree and the method
of solution is that already given.

Now let us make up the equations for a quadrilateral.
The triangular equations are
Bt o, t+a;+ 2= ¢
Zy+ 2y 25 + 2= ey
T+ Tt x;+ag=¢

the other equation can be neglected, as it is the
sum of the first and third minus the second.

The sidz equation is
=52+ Sy g (B B) — sy vyt s X — S q (B ) + 3 7= e
where $w, » = change in log sin (X, + X,) for 17,
which are the equations in the computation form,

‘We have shown above that we get 2 equations to find » unknowns A, A5 . . . Ay
The solution can of course be effected in many ways, but it is better always to follow
one method and the one first used by Guauss and now adopted in the Survey of India is
as followa:—DMultiply the first equation by the coefficient of A, and divide by the
cocfficient of A, and record the result with the sign changed, Multiply the first
equation by the coeflicient of A,, divide by the coefficient of A, and record the result
with the sign changed and so on. Then add second line of the first set of equations to
the first line of this set, the third of the first set to the second of the new set and so
on. The result will be n—1 equatious containing Ay, A . .. Ay,. Proceed in a similar
way with this sct and we get n—2 equations containing A, ...\, and so on. Finally
we get a single equation in A, acd working backwards we get Ap—1. . « Ay Ay s

XV.—Least number of equations in e figure.

The manner of forming the equations is as follows. Choosing any side of the
figure, it does not matter which, as a base, a skeleton figure is drawn consisting of
sufficient sides onfy to fix all the stations; every triangle thus formed, of which the
three angles have been observed, furnishes a ¢riangular equation ; the remaining sides
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are then introduced in succession, and, as each is drawn, the corresponding equations
are formed ; cvery side so added introduces one or more observed angles that were not
employcd before, and each angle furnishes a new equation of condition, usually either
a triangular or a side or a central equation ; but it may happen that the new side com-
pletes, not a triangle, but a four or more sided figure, in which case the triangular
equation is merely replaced by one of another kind, usually the geometrical equation
between the interior angles of the figure so completed. If, as each angle is introduced,
an equation is written down which includes it, no redundant equations will occur.

Let N be the number of observed angles,
s S s stations of observation,

then S — 2 triangles are required to fix the relative positions of S stations; if of
these only P triangles have the three angles observed, there will be 2 (S —2) + P
angles giving P triangular equations; every new angle which does not fix a new station,
now introduced, gives an additional equation; consequently the number of new
equations is N — {2(8 —2) 4+ P}, and the total mumber of equations
=P+ N-{2(8—2)+P}=N—-28+4.

Besides the triangular, central and side equations already spoken of, there may
be another class of equations called toto-partial equations. These occur when a whole
angle has becn observed as well as its separate parts. The first thing is to find all the
possible triangular equations, central equations and toto-partial equations, and the
number of side equations will be the difference between these and the total number

above given.

J. ECCLES, ma.,

Deara Dun:
Offy. Superintendent Trigonometrical Surveys.

10th February 1903.
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